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Abstract—We examine the favorable propagation (FP) be-
havior of a massive multi-user multiple-input-multiple-output
(MU-MIMO) system equipped with a uniform linear array
(ULA), horizontal uniform rectangular array (HURA) or uniform
circular array (UCA) using a ray-based channel model with
user cluster sharing. We demonstrate FP for these systems and
provide analytical expressions for the mean-squared distance
(MSD) of the FP metric from its large-system limit for each of the
aforementioned topologies. We use these results to examine the
detrimental effects of user cluster sharing on FP behavior, and
demonstrate the superior performance of the ULA as compared
to the UCA and the HURA with equal inter-element spacing.
Although cluster sharing has a negative impact on FP for
finite arrays, we additionally examine the asymptotic rate of
convergence to FP as a function of array size and show that
this rate is unchanged with or without user cluster sharing.

I. INTRODUCTION

Favorable propagation (FP) is a key concept underpinning
the potential of massive MIMO systems [1]. As the number of
base station (BS) antennas grows without bound, FP describes
the resulting mutual orthogonality of user channel vectors. FP
is important for a variety of reasons. It is of intrinsic interest
as a fundamental measure of interference [1] and is essential
for the effective performance of matched filtering (MF) [1].
While alternative, interference-cancelling techniques such as
zero-forcing (ZF) and minimum mean squared error (MMSE)
combining do not require FP to combat interference, their
performance is still aided by FP. This is shown in [5] where
the performance of ZF and MMSE is analytically linked to a
measure of FP.

FP is also an intrinsically valuable property for the practical
realisation of massive MIMO systems. Algorithms are being
designed based on the assumption that FP holds [3] which has
been shown to simplify various aspects of resource manage-
ment [4]. We note that MF is still the most preferred multiuser
processing choice from an implementation viewpoint, since it
only consumes a small fraction of the total field programmable
gate array (FPGA) resource usage, needing no real-time op-
timization routines such as loop unrolling or pipelining. This
is in stark contrast to the more sophisticated matrix inversion-
based processing techniques, which require rigorous high-level
synthesis to optimize and manage the real-time dataflow, in
order to meet the overall post-scheduler processing latency
requirements of 5G New Radio (5G-NR).

There exists a great amount of analysis on FP for multi-
user MIMO (MU-MIMO) systems with classical statistical

channel models, ranging from simple i.i.d. Rayleigh fading
[1], to more complex heterogeneous correlated Ricean models
[2]. While providing valuable insight, their conclusions are
by their nature linked to the statistical model parameters and
not to the underlying physical and electromagnetic properties
of the system and environment. Furthermore, propagation
measurements suggest that millimeter-wave (mmWave) chan-
nels are better described by spatial or ray-based models [6],
[7]. While explicitly incorporating the effects of different
environmental properties and antenna topologies, the resulting
complex structure of these models leads to often intractable
analysis. Hence, a large portion of literature which examines
FP with these physically-motivated models does so through
simulation, measurement, or ray-tracing [8], [9]. For example,
FP is examined via ray-tracing of a dense urban location for a
uniform linear array (ULA), uniform circular array (UCA), and
uniform rectangular array (URA) in [8], and for a ULA and
UCA in [9]. The latter additionally simulates the WINNER
II channel model. The majority of works which provide a
mathematical analysis rely on various assumptions around
the angular distributions [7], [10]–[12]. The authors of [10]
examine FP conditions using a ray based model with uniform
angles for a ULA, horizontal URA (HURA), and UCA, while
[11] and [12] do so for a ULA only. The analysis in [7] uses
Gaussian and Laplacian distributed sub-rays, but still imposes
the assumption of uniform cluster angles. In recent literature,
there are only a handful of examples which provide generic
closed-form analysis of MU-MIMO systems for ray-based
models with arbitrary angular distributions [5], [13], [14].

To the best of the authors’ knowledge, all of the analytical
work to date applies exclusively to ray-based models in the ab-
sence of user cluster sharing, making the channels of different
users statistically independent. However, models such as the
COST 2100 model [15] can generate a significant probability
that a scattering cluster will be visible to multiple users. This
prevalence of common scatterers is supported by measurement
[16]. Although the significant impact of common scatterers on
inter-user channel correlation (and thus FP) has been shown
via simulation [17], all analytical progress neglects this and is
instead facilitated by the assumption that the user channels
are independent. In anticipation of the potential effects of
common clusters, we examine the FP condition for a MU-
MIMO system with ray-based channels featuring user cluster
sharing and a range of antenna topologies. More specifically,



our contributions are as follows.
• While the existence of FP has been proven for a uniform

linear array (ULA) and a horizontal uniform rectangular
array (HURA) without cluster sharing in [18], we prove
that FP holds with cluster sharing for ULA and HURA
configurations. We also conjecture that FP holds for a
UCA with and without user cluster sharing and provide
a mathematical basis for the conjecture which may have
applications to more general topologies (see Sec. III).

• In Sec. IV, we derive analytical expressions for the mean
squared distance (MSD) of the FP metric from its large
system limit for a finite-antenna system equipped with
a ULA, HURA, and UCA with cluster sharing. We use
this as a measure of the “distance from FP” for a finite-
antenna system.

• In Sec. V we examine the ergodic rate of convergence to
FP for a ULA with and without cluster sharing.

• We observe that user cluster sharing has a detrimental
impact on FP behavior, while topologies with larger
azimuth footprints promote FP behavior. We discuss how
the superior spatial resolution of such topologies provides
resilience to the correlated channel conditions caused by
cluster sharing, reducing the MSD from FP.

II. SYSTEM MODEL

We consider uplink (UL) transmission in a single-cell MU-
MIMO system where a base station (BS) is equipped with
M antennas and serves several single-antenna users (UEs).
We adopt a clustered ray-based channel model. Within each
drop, the angular parameters for the UEs are defined by the
following process. CT scattering clusters are each assigned
a random central azimuth angle of arrival (AAoA), φc, and
central elevation angle of arrival (EAoA), θc, where c =
1, 2, . . . CT . Each user l is randomly allocated (with equal
probability) a set of C visible clusters, C(l), where C ≤ CT
and C(l) ⊂ {1 . . . CT }. Each cluster c scatters a user’s signal
into S sub-rays with random, instantaneous angular offsets
∆

(l)
c,s and δ

(l)
c,s in azimuth and elevation, respectively (exact

distributions are discussed later in the text). Hence the AAoA
of ray s from user l through cluster c is φ(l)

c,s = φc + ∆
(l)
c,s and

similarly the EAoA is θ(l)
c,s = θc + δ

(l)
c,s. While one or more

central angles may be shared by multiple UEs for whom a
common cluster is visible, the subray offsets are assumed to be
i.i.d. as different UE locations will lead to different reflection
points along a common scatterer. The resulting M×1 channel
for user l is given by

hl =
∑
c∈C(l)

S∑
s=1

γ(l)
c,sa

(
φ(l)
c,s, θ

(l)
c,s

)
, (1)

where the ray phases, Θ
(l)
c,s, and powers, β(l)

c,s, are contained

within γ
(l)
c,s =

√
β

(l)
c,se

jΘ(l)
c,s , and

∑
c∈C(l)

∑S
s=1 β

(l)
c,s = β(l).

We define β(l) as the overall link gain between user l and
the BS, which is divided amongst the visible clusters such
that the cluster powers, β(l)

c , add up to β(l). Each subray s

has ray power β(l)
c,s = β

(l)
c /S. Note that the large-scale fading

simply scales the user channel vectors. It has no impact on the
existence of FP, and as shown in Sec. IV-A, it scales the MSD
from FP. We include β(l) in the analysis for completeness but
set β(l) = 1 ∀ l for all numerical results. This normalises the
channel vectors.

The steering vector a(φ, θ) for an arbitrary ray with angles
φ and θ is governed by the antenna topology at the receiver.
For a ULA located along the x-axis with an antenna spacing
of dx wavelengths, the mth entry of a(φ, θ) is given by [10]

(a(φ, θ))m = ej2π(m−1)dx sinφ. (2)

For a HURA situated in the azimuth plane with antenna
spacings dx and dy ,

a(φ, θ) = ax(φ, θ)⊗ ay(φ, θ). (3)

Let Mx and My be the number of antennas along the x- and
y-axis respectively, then the entries of the Mx×1 vector ax(·)
are defined as [10]

(ax(φ, θ))m = ej2πdx(m−1) sin θ cosφ (4)

and those of the My × 1 vector ay(·) are

(ay(φ, θ))m = ej2πdy(m−1) sin θ sinφ. (5)

Finally, the entries of the steering vector for a UCA in the
azimuth plane with antenna spacing dr are given as [10]

(a(φ, θ))m = ej
πdr

sin(π/M)
sin θ cos (φ−ψm), (6)

where ψm = 2πm/M . We adopt the simple cluster sharing
mechanism previously described to emulate that in the COST
2100 model - the most complete sharing mechanism which
has been proposed thus far. In COST 2100, each cluster is
allocated one or more visibility regions (VR); a cluster is said
to be visible to a user if that user falls within the cluster’s
VR(s). A cluster can thus be visible to, and hence shared by,
multiple UEs. Our model provides a simple mechanism to
introduce this feature. Analysis of cluster sharing only depends
on the probability that a randomly selected ray from one user
originates from the same cluster as a randomly selected ray
from another user. This sharing probability is denoted by psh
and can be simply adjusted by changing CT as the sharing
mechanism gives psh = 1/CT . Although this mechanism
limits the possible values of psh in simulations, it provides a
much simpler simulation method for the purpose of verifying
analytical results which can then be used for any value of psh
between 0 and 1 in the analysis.

Note that this model contains several approximations. For
example, the visibility of clusters might be a function of the
distance between the UE and the cluster. Additionally, a per-
cluster shadowing might occur or, for very small distances
between two UEs, the angles of the subrays within the
cluster might become correlated. While incorporating these
effects would further refine the channel model, it would make
analytical treatment very difficult. The model we consider is
thus a compromise, but importantly one that is more accurate
than all the models previously used.



III. EXISTENCE OF FP WITH CLUSTER SHARING

In this section we examine the existence of FP for ray-based
channels with inter-user cluster sharing. Sec. III-A presents
generic conditions for FP to hold with these models, while
Sec. III-B examines these conditions for a ULA, HURA, and
UCA. Recall that FP has been proven in [18] for a ULA and
HURA in the absence of cluster sharing. Here, we extend these
results by considering shared clusters. We also conjecture the
existence of FP for a UCA with and without cluster sharing
and provide a posible methodology for a mathematical proof.

A. Requirements for FP

FP requires limM→∞ hH
l hl′/M → 0 ∀ l 6= l′. Substitut-

ing the channel model from (1), hH
l hl′ becomes

hH
l hl′ =

∑
s,c

∈C(l)

∑
s′,c′

∈C(l
′)

γ(l)∗
c,s γ

(l′)
c′,s′a

H(φ(l)
c,s, θ

(l)
c,s)a(φ

(l′)
c′,s′ , θ

(l′)
c′,s′)

=
∑

s,c∈C(l)

∑
s′,c′∈C(l

′)

c′ 6=c

γ(l)∗
c,s γ

(l′)
c′,s′a

H(φ(l)
c,s, θ

(l)
c,s)a(φ

(l′)
c′,s′ , θ

(l′)
c′,s′)

+
∑
s,c

∈C(l)

S∑
s′=1

γ(l)∗
c,s γ

(l′)
c,s′a

H(φ(l)
c,s, θ

(l)
c,s)a(φ

(l′)
c,s′ , θ

(l′)
c,s′)

, T1 + T2, (7)

where
∑
s,c∈C(l) denotes

∑
c∈C(l)

∑S
s=1. The existence of FP

requires limM→∞ T1/M → 0 and limM→∞ T2/M → 0,
where T2 isolates cases of shared clusters between users l
and l′.

B. FP with Different Antenna Configurations

The existence of FP for ULA, HURA, and UCA antenna
configurations can be determined by examining the limits of
T1 and T2 for the steering vectors defined in (2), (3), and (6).

1) ULA and HURA: In [18], it is proven that
limM→∞

1
M T1

a.s.−−→ 0 for a ULA and HURA for a
generic ray based model, without cluster sharing. The
analysis in [18] hinges on the results

P (sinφ(l)
c,s = sinφ

(l′)
c′,s′) = 0 (8)

for a ULA, and

P (sin θ(l)
c,s cosφ(l)

c,s = sin θ
(l′)
c′,s′ cosφ

(l′)
c′,s′) = 0, (9)

P (sin θ(l)
c,s sinφ(l)

c,s = sin θ
(l′)
c′,s′ sinφ

(l′)
c′,s′) = 0 (10)

for a HURA. In [18], these results followed from the fact
that the angles φ(l)

c,s, θ
(l)
c,s, φ

(l′)
c′,s′ , θ

(l′)
c′,s′ are continuous random

variables chosen independently amongst clusters, sub-rays, and
users. Exactly the same argument applies to T1 as here the rays
are independent. With shared clusters, the situation is different
as the rays in T2 are dependent due to the presence of a shared
cluster (c = c′). Nevertheless, the probabilities in (8), (9), and
(10) are still zero as the i.i.d. angular offsets make the angles
φ

(l)
c,s, θ

(l)
c,s, φ

(l′)
c′,s′ , θ

(l′)
c′,s′ conditionally independent continuous

random variables, where the conditioning is on the central

angles. Hence, FP holds for a ULA and HURA configuration
with and without cluster sharing.

2) UCA: Using the UCA steering vector in (6), for FP we
have

T1 + T2 =
∑
s,c

∈C(l)

∑
s′,c′

∈C(l
′)

γ(l)∗
c,s γ

(l′)
c′,s′

×
M−1∑
m=0

e
−jπdr

sin(π/M)
[sin θ(l)c,s cos(φ(l)

c,s−ψm)−sin θ
(l′)
c′,s′ cos(φ

(l′)
c′,s′−ψm)]

=
∑
s,c

∈C(l)

∑
s′,c′

∈C(l
′)

γ(l)∗
c,s γ

(l′)
c′,s′

M−1∑
m=0

e
−jπdr

sin(π/M)

√
a2+b2 sin(ψm+α)

where a = sin θ
(l)
c,s cosφ

(l)
c,s − sin θ

(l′)
c′,s′ cosφ

(l′)
c′,s′ , b =

sin θ
(l)
c,s sinφ

(l)
c,s − sin θ

(l′)
c′,s′ sinφ

(l′)
c′,s′ , and α = tan−1(a/b).

Hence, FP holds if

lim
M→∞

1

M

M−1∑
m=0

e−jMdr
√
a2+b2 sin(ψm+α) → 0 (11)

where we utilise the small angle approximation sin(π/M) ≈
π/M for large M . At this stage, the convergence remains
a conjecture, supported by numerical results in Sec. VI.
Intuitively, convergence occurs because the complex expo-
nential in (11) is averaged over M values of the complex
argument ranging from −Mdr

√
a2 + b2 to Mdr

√
a2 + b2.

This large number of points wraps around the unit circle many
times, becoming nearly uniform on [0, 2π] for large M so
that the average converges to zero. This is the idea behind
several mathematical proofs, for example [19]. Unfortunately,
established results do not precisely cover the UCA sum in
(11) for two reasons. First, the sum in (11) is not a sum of
fixed terms as M →∞ as the terms are actually functions of
M . Secondly, most proofs rely on the exponential arguments
forming a lacunary sequence [19], meaning that the arguments
can be ordered so there is a minimum ratio between adjacent
terms that is greater than 1. This is not the case in (11) where
two arguments can be arbitrarily close to each other. These
technical problems with a proof have been relaxed in various
similar situations. Hence, the result remains a conjecture, albeit
a well-motivated one. This conjecture may have extensive
applications as a proof based on this argument may be the
basis of a proof for any practical antenna topology.

IV. FINITE SYSTEM ANALYSIS

In this section, we examine the MSD of hH
l hl′/M from the

FP limit as a means of assessing the proximity to FP condi-
tions for finite-antenna systems. Sec. IV-A provides a generic
analysis of this metric for ray-based models with user cluster
sharing, while Sec. IV-B provides analytical expressions for a
ULA, HURA, and UCA. Note that a similar distance metric
is used in [10], while alternative metrics can be found in, for
example, [1].



A. Mean Squared Distance from FP

We examine κFP which we define as the MSD of hH
l hl′/M

from the FP limit. Having proven the existence of FP in
Sec. III-B, κFP is given by

κFP =
1

M2
E[|hH

l hl′ |2]. (12)

Substituting (1), and noting that E[γ
(l)∗
c,s γ

(l′)
c′,s′ ] = 0 for c 6= c′

or s 6= s′ or l 6= l′, we obtain

κFP =
1

M2
E
[ ∑
s,c

∈C(l)

∑
s′,c′

∈C(l
′)

|γ(l)
c,s|2|γ

(l′)
c′,s′ |

2

× aH(φ(l)
c,s, θ

(l)
c,s)a(φ

(l′)
c′,s′ , θ

(l′)
c′,s′)a

H(φ
(l′)
c′,s′ , θ

(l′)
c′,s′)a(φ(l)

c,s, θ
(l)
c,s)
]

= β(l)β(l′) ((1− psh)Kc + pshKs) , (13)

where we define

Kc =
1

M2
E[|aH(φ(l)

c,s, θ
(l)
c,s)a(φ

(l′)
c′,s′ , θ

(l′)
c′,s′)|

2] (14)

Ks =
1

M2
E[|aH(φ(l)

c,s, θ
(l)
c,s)a(φ

(l)
c,s′ , θ

(l)
c,s′)|

2]. (15)

Equation (13) follows from first taking the expectation inside
the sum. Then, we note that the expectation over the ray angles
only depends on whether the two rays share a cluster. The ray
indexed by c, s has the same cluster as the ray indexed by
c′, s′ with probability psh. Similarly the two rays have different
clusters with probability 1−psh. In essence, the distance from
FP for a finite antenna system hinges on the expected inner
product of the steering vectors of two rays. Kc and Ks are
exactly this, for the cases of unique cluster central angles and
common cluster central angles, respectively. Here, we note that
the large-scale fading values β(l) and β(l′) simply scale κFP,
and that κFP is independent of the number of clusters, C, and
subrays, S, which contribute to each UE’s channel.

B. Solutions for Kc and Ks

1) ULA: Solutions for KULA
c and KULA

s are given in [13]
as

KULA
c =

1

M2

M−1∑
m,m′

|E[ej2πdx(m−m′) sinφ]|2 (16)

=
1

M2

M−1∑
m,m′

∣∣∣∣∣
∞∑

n=−∞
χaz
c (n)χaz

s (n)Jn(2πdx(m′ −m))

∣∣∣∣∣
2

,

and

KULA
s =

1

M2

M−1∑
m,m′

E
[
e
−j2πdx(m−m′)(sin(φ(l)

c,s)−sinφ
(l′)
c,s′ )
]

=
1

M2

M−1∑
m,m′

∣∣∣∣ ∞∑
n=−∞

∞∑
n′=−∞

χaz
c (n− n′)χaz

s (n)χaz*
s (n′)

× Jn(2πdx(m′ −m))Jn′(2πdx(m′ −m))

∣∣∣∣2, (17)

where we write
∑I−1
i,j in place of

∑I−1
i=0

∑I−1
j=0 and Jn

is the nth order Bessel function of the first kind. Here,
χaz
c (n) = Eφ[ejnφ] and χaz

s (n) = E∆[ejn∆] are the character-
istic functions for the azimuth central cluster angles and subray
angles, respectively. Similarly, χel

c and χel
s are the equivalents

in elevation. In [5] the convergence of these summations
is shown to be extremely rapid, hence the bounds of the
summations can be truncated to a reasonable number of terms
without significant loss of accuracy.

2) HURA: Substituting (3) into (14) we have:

KHURA
c =

1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

E
[
e
j2πdx(mx−m′x)(sin θ(l)c,s cosφ(l)

c,s−sin θ
(l′)
c′,s′ cosφ

(l′)
c′,s′ )

× ej2πdy(my−m′y)(sin θ(l)c,s sinφ(l)
c,s−sin θ

(l′)
c′,s′ sinφ

(l′)
c′,s′ )

]
=

1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

|E[e(j2π sin θ[z1 cosφ+z2 sinφ])]|2

=
1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

|E[e(jzT sin θ sin(φ+α))]|2 (18)

with z1 = dx(mx − m′x), z2 = dy(my − m′y), zT =

2π
√
z2

1 + z2
2 , and α = tan−1(z1/z2). From [5] we have

KHURA
c =

Mx−1∑
mx,m′x

My−1∑
my,m′y

∞∑
n=−∞

∞∑
n′=−∞

(19)

(−1)ρ(n
′)χaz

c (n′)χaz
s (n′)χel

c (2n)χel
s (2n)ejn

′αζc(n, n
′),

where ζc(n, n
′) = J|n|/2−n′ (zT /2) J|n|/2+n′ (zT /2) and

ρ(x) = min(x, 0). To solve for KHURA
s we substitute the

HURA steering vector from (3) into (15) and obtain

KHURA
s =

1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

(20)

E
[
ej2π sin θ(l)c,s(dx(mx−m′x) cosφ(l)

c,s+dy(my−m′y) sinφ(l)
c,s)

× e−j2π sin θ
(l′)
c,s′ (dx(mx−m′x) cosφ

(l′)
c,s′+dy(my−m′y) sinφ

(l′)
c,s′ )
]
.

Using basic trigonometric results, this becomes

KHURA
s =

1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

(21)

E
[
e
jzT [sin(θ(l)c,s) sin(φ(l)

c,s+α)−sin(θ
(l′)
c,s′ ) sin(φ

(l′)
c,s′+α)]

]
.

We provide an analytical expression for KHURA
s in Lemma 1.

Lemma 1: For a HURA, Ks is given by

KHURA
s =

1

4M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

∞∑
n=−∞

∞∑
n′=−∞

∞∑
k=−∞

∞∑
k′=−∞

χaz
c (n+ n′)χaz

s (n)χaz
s (n′)χel

c (k + k′)χel
s (k)χel

s (k′)

× ej(n+n′)αej
π
2 (k+k′)ζs(n, n

′, k, k′, zT ), (22)



with

ζs(n, n
′, k, k′, zT )

= e−j(k+k′)/(2π)J |n|
2 −

k
2

(−zT /2) J |n|
2 + k

2
(−zT /2)

× (−1)ρ(n)+ρ(n′)J |n′|
2 −

k′
2

(zT /2) J |n′|
2 + k′

2

(zT /2) . (23)

Proof: The proof is given in the Appendix.
3) UCA: Substituting the UCA steering vector from (6)

into (14) and (15) we have

KUCA
c =

1

M2
E

[
|
M−1∑
m=0

e−j
πdr

sin(π/M)
sin θ(l)c,s cos(φ(l)

c,s−ψm)

× ej
πdr

sin(π/M)
sin θ

(l′)
c′,s′ cos(φ

(l′)
c′,s′−ψm)|2

]

=
1

M2

M−1∑
m,m′

|E[e
jπdr

sin(π/M)
sin θ(cos(φ−ψm)−cos(φ−ψm′ ))]|2

=
1

M2

M−1∑
m,m′

|E[ejz
′
T sin θ sin(φ+α′)]|2, (24)

and

KUCA
s =

1

M2

M−1∑
m,m′

E[e
−jπdr

sin(π/M)
sin θ(l)c,s[cos(φ(l)

c,s−ψm)−cos(φ(l)
c,s−ψm′ )]

× ej
πdr

sin(π/M)
sin θ

(l′)
c,s′ [cos(φ

(l′)
c,s′−ψm)−cos(φ

(l′)
c,s′−ψm′ )]]

=
1

M2

M−1∑
m,m′

E[ejz
′
T sin θ(l)c,s sin(φ(l)

c,s+α
′)e
−jz′T sin θ

(l′)
c,s′ sin(φ

(l′)
c,s′+α

′)
],

(25)

with z′1 = cosψm′ − cosψm, z′2 = sinψm′ − sinψm, z′T =
πdr

sin(π/M)

√
z′21 + z′22 , and α′ = tan−1(z′1/z

′
2). Here, we see

that KUCA
c in (24) and KUCA

s in (25) are identical in form
to KHURA

c and KHURA
s in (18) and (21). Hence we provide

analytical expressions for KUCA
c and KUCA

s in Lemma 2.
Lemma 2: KUCA

c and KUCA
s are given by (19) and (22) with

z1 = z′1, z2 = z′2, zT = z′T , α = α′.

V. LARGE SYSTEM CONVERGENCE RATE

We now examine the rate of decay of κFP for a ULA in the
large system limit using the methodology from [14], extended
to accommodate user cluster sharing. From (13), this decay
rate is determined by the decay rates of Kc and Ks. For KULA

c

we begin by reducing (16) to a single summation of the form

KULA
c =

1

M

(
1 + 2

M−1∑
m=1

(
1− m

M

) ∣∣E [e−j2πdxm sinφ
]∣∣2)

=
1

M
(1 + 2ν) . (26)

In [18], it is shown that ν is O(logM) in most situations,
but in the absence of end-fire radiation ν is O(1). Hence,

KULA
c decays as O (1/M) ≤ O

(
KULA
c

)
≤ O (logM/M).

For KULA
s , we have the form

KULA
s =

1

M2

M−1∑
m,m′

E
[
e
−j2πdx(m−m′)

(
sin(φ(l)

c,s)−sin
(
φ
(l′)
c,s′

))]

= Eφ
[

1

M2

M−1∑
m,m′

∣∣∣∣E∆

[
e−j2πdx(m−m

′)(sin(φc+∆(l)
c,s))

]∣∣∣∣2].
(27)

The contents of the expectation Eφ[·] in (27) are identical in
form to (16) with an additional angular offset φc which is
constant relative to the expectation. By the same process used
to analyse the decay rate of KULA

c , we find that KULA
s also de-

cays as O(1/M) ≤ O(KULA
s ) ≤ O(logM/M). This implies

the decay rate of κFP is O(1/M) ≤ O(κFP) ≤ O(logM/M).

VI. NUMERICAL RESULTS

This section presents numerical results and a discussion of
the trends observed in κFP for different antenna topologies and
varying levels of cluster sharing. Recall that higher levels of
κFP indicate a slower convergence to FP.

Table I gives the parameters considered. The angular spread
values for Scenarios 1 and 2 were obtained from [6] and [20],
respectively, and a square HURA is considered. Central cluster
angles are Gaussian distributed in azimuth and Laplacian
distributed in elevation while subray angles are Laplacian
distributed in both cases, in accordance with [6] and [20].

TABLE I
PARAMETERS FOR NUMERICAL RESULTS

Parameter Values
antenna spacing, dr , dx and dy 0.5

Azimuth values
cluster angle mean, µc 0°

cluster angle variance, σ2
c , (Scen. 1, Scen. 2) (14.4°)2, (31.64°)2

subray angle variance, σ2
s , (Scen. 1, Scen. 2) (6.24°)2, (24.25°)2

Elevation values
cluster angle mean, µ̂c 90°

cluster angle variance, σ̂2
c , (Scen. 1, Scen. 2) (1.9°)2, (6.12°)2

subray angle variance, σ̂2
s , (Scen. 1, Scen. 2) (1.37°)2, (1.84°)2

Figs. 1 and 2 examine the MSD from FP for Scenarios 1
and 2, respectively. For comparison, we also include results for
i.i.d. spherically uniform ray angles in Fig. 1. We evaluate κFP

by simulation using (12)1 and by analysis using the results in
Sec. IV-B with the characteristic functions of the Gaussian and
Laplacian angular variables given by χaz

c (n) = exp(jnµc −
n2σ2

c/2), χaz
s (n) = (1+n2σ2

s)−1, χel
c (n) = (1+n2σ̂2

c )−1, and
χel
s (n) = (1+n2σ̂2

s)−1. The first trend observed from Figs. 1
and 2 is the significant increase of κFP with increased cluster
sharing. When the channels from two users share common
clusters, some of the sub-rays from the different users will be
centred around the same central angle. Hence, the channels
become more correlated which increases κFP. Values of psh
as small as 1/3 can increase κFP by up to 25% relative to

1As discussed in Sec. IV-A, κFP is independent of C and S. However, for
the purpose of simulating channels, we use C = 1 and S = 16.
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Fig. 1. κFP vs M for all antenna configurations: low spread (Scen. 1).
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Fig. 2. κFP vs M for all antenna configurations: high spread (Scen. 2).

psh = 0 - a significant effect considering that the “significance
of common clusters” has been observed to be as high as 95%
in indoor measurements [17].

Comparing the size of κFP in Figs. 1 and 2, we observe that
a larger angular spread decreases κFP. Increasing the angular
spread and thus the channel diversity decreases the average
similarity between the channels of two different users. This in
turn reduces the inner product in (12) and, consequently, κFP.

In Figs. 1 and 2, we see that the ULA provides the smallest
distance to FP, followed by the UCA, and finally the HURA.
We attribute this to the corresponding azimuth footprint re-
duction of these topologies. As seen in the angular parameters
from measurements (see Table I), the majority of the angular
diversity is contained in the azimuth plane. Increasing the
azimuth footprint of the antenna topology therefore provides
more spatial diversity, hence decreasing κFP.

The insight regarding the azimuth footprint of the topologies
agrees with previous results for ray-based channels found
using simulation in [8], but contradicts previous analytical
results in [10]. The latter finds that the antenna topology has
little effect on the distance from FP. We conclude that the use
of uniform angular distributions in [10] obscures the effects of
the antenna topology with realistic angular distributions. This
is illustrated by the i.i.d. spherically uniform results in Fig. 1
which show little variation across topologies. In addition, with

spherically uniform rays the MSD from FP is highest for
the ULA and lowest for the UCA (see Fig. 1 and [10]),
whereas for Scenarios 1 ad 2, the MSD is highest for the
HURA and lowest for the ULA. This change in ordering is
best explained in terms of a ULA. With Scenarios 1 and 2,
the ray azimuth distributions are concentrated near broadside.
From this angle, the topology has a wide azimuth footprint.
However, for the spherical uniform case, there is a wide range
of ray angles from which the footprint of the topology appears
much narrower. Hence, we see that the use of unrealistic
angular distributions drastically alters both the size and nature
of the topology effects on FP behavior.

The following insights can be gained from these obser-
vations. For moderate values of M , for which the spatial
resolution is sufficient to distinguish clusters, but not subrays,
FP behavior is determined by diversity amongst clusters. Thus,
user cluster sharing diminishes performance for moderate M ,
as there are fewer degrees of freedom to separate UEs. As M
increases further, the spatial resolution becomes sufficiently
fine to distinguish subrays. In this ”subray-dominated region”,
user cluster sharing has less of an effect because all subrays
deliver nearly orthogonal steering vectors. Thus, we see the
values of κFP for different sharing probabilities converge in
Figs. 1 and 2: in the limit M → ∞, cluster sharing does
not play a role. The transition region from cluster- to subray-
dominated resolution is not only determined by M , but also
the array shape. The azimuthal resolution of a HURA is much
less than a UCA, and further, a ULA for same element spacing.
Hence the antenna topologies with larger azimuth footprints
will enter the subray-dominated region at lower values of M .

The observed trends intuitively align with the common
understanding of massive MIMO systems’ reliance on diverse
channel conditions. Wider angular spreads increase diversity,
and a wider azimuth footprint provides more spatial infor-
mation to capture diversity. This facilitates the natural ability
of MIMO to passively orthogonalize user channels. Cluster
sharing diminishes diversity, impairing this functionality.
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Fig. 3. Decay rate of κFP for ULA in the large system limit (Scen. 1).

Finally, in Fig. 3 we examine the large-system decay rate of
κFP for a ULA in Scenario 1. Here, we plot κFP with both x−
and y− axes on a logarithmic scale. From Sec. V we know
that O(1/M) ≤ O(κFP) ≤ O(log(M)/M). For the system
simulated in Fig. 3 the value of O(κFP) is O(log(M)/M).
Hence a plot of log(κFP) vs log(M) follows an approximately
linear trend for large M as log(log(M)) is extremely slowly
varying. This pattern is verified in Fig. 3.



VII. CONCLUSIONS

We prove the existence of FP for a ULA and HURA
topology for a ray-based channel model with user cluster
sharing, and provide conjecture for FP existence for a UCA.
We provide analytical expressions for the distance from FP
for a finite-antenna system with each of these topologies, and
prove that the distance from FP decays at a rate between
O(1/M) and O(logM/M) in the large system limit with
cluster sharing, as is the case without cluster sharing. We use
our results to identify the detrimental effect of user cluster
sharing on FP behavior, and determine that FP behavior is
best facilitated by topologies with larger azimuth footprints.

APPENDIX
PROOF OF LEMMA 1

Writing φ(l)
c,s = φc+∆

(l)
c,s and θ(l)

c,s = θc+δ
(l)
c,s, (21) becomes

KHURA
s =

1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

E[ejzT sin(θc+δ
(l)
c,s) sin(φc+∆(l)

c,s+α)

× e−jzT sin(θc+δ
(l′)
c,s′ ) sin(φc+∆

(l′)
c,s′+α)

]. (28)

We first take the average over azimuth subray offsets using
the result for E∆[ejB sin(∆+C)] from App. D of [5] and obtain

KHURA
s =

1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

Eφ,θ,δ
[
E∆[ej2πzT sin(θc+δ

(l)
c,s) sin(φc+∆(l)

c,s+α)

× e−j2πzT sin(θc+δ
(l′)
c,s′ ) sin(φc+∆

(l′)
c,s′+α)

]
]

=
1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

Eφ,θ,δ
[ ∞∑
n=−∞

ejn(φc+α)χaz
s (n)Jn(zT sin(θc + δ(l)

c,s))

(29)

×
∞∑

n′=−∞
ejn
′(φc+α)χaz

s (n′)Jn′(−zT sin(θc + δ
(l′)
c,s′))

]
.

Evaluating the expectation over azimuth central cluster angles
using the definition of the characteristic function χaz

c , we have

KHURA
s =

1

M2

Mx−1∑
mx,m′x

My−1∑
my,m′y

∞∑
n=−∞

∞∑
n′=−∞

ej(n+n′)αχaz
c (n+ n′)χaz

s (n)χaz
s (n′)

× Eθ,δ[Jn(zT sin(θc+δ(l)
c,s))Jn′(−zT sin(θc+δ

(l′)
c,s′))].

(30)

Finally, the expectation over elevation subray offsets is com-
puted using the same technique used in [13] and [5] where the

angular PDF is replaced with its Fourier series. This gives:

Eθ,δ[Jn(zT sin(θc + δ(l)
c,s))Jn′(−zT sin(θc + δ

(l′)
c,s′))] (31)

=
1

4π2

∞∑
k=−∞

k=∞∑
k′=−∞

χel
s (k)χel

s (k′)Eθ[ej(k+k′)θ]

×
∫ π

0

e−jkxJn(zT sinx)dx

∫ π

0

e−jk
′xJn′(−zT sinx)dx.

We evaluate the angular average in elevation over the range
[0, π]. This approximation covers the bulk of the PDF which
is centred on π/2 and typically has a standard deviation less
than 10o from measurement [6], [20]. Using [21, Equations
6.681.8 and 6.681.9] we have the desired solution.
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